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FREE-CONVECTION HEAT TRANSFER ON A VERTICAL SURFACE WITH A TEMPERATURE 

DISCONTINUITY 

Yu. A. Sokovishin and L. A. Erman UDC 536.25 

Parametric correlations are obtained for calculating heat transfer on a vertical 
surface with a temperature discontinuity, over a wide range of variation of 
Prandtl number and for calculating the relations of temperatures at the wall. 

The investigation of free convection heat transfer at a wall with various boundary con- 
ditions involves problems of singular perturbations of the full Navier--Stokes equations and 
the energy equation. It has been shown by the method of matched asymptotic expansions that 
in the first approximation this problem can be considered using the boundary-layer equations 
[i]. Numerical calculations of free convection on a vertical surface in air [2, 3] agree 
well with experimental data [4]. The available data in the literature on heat transfer re- 
fer to particular cases of temperature discontinuity and to Pr = 0.7. 

We consider free convection on a vertical plane surface. On the lower part of the wall 
(0 ~ x 4 xo) the temperature is given as Two, and on the upper part (x > xo) the tempera- 
ture is Twa (Twx > T~, Tw2 > T~). Due to the temperature difference between the wall and 
the surrounding medium, the motion of the fluid is directed upward, parallel to the wall. 
Assuming that energy dissipation and the work of compression are negligibly small, we can 
represent the system of equations of motion and heat transfer in the boundary layer in the 
form [i] 

au av a~ aft 0"2~ 
- -  ~ 0 ,  u q -  v - - : a ~  
ax + ag ~ @ @2 ' 

au au a2u 
u + v - - =  g ~  + v 

ax ay ag~ 
(i) 

with the boundary conditions 

U:==O, v ~ O  for y ~ O ;  u ~ O ,  ~ 0  for y - - ~ ;  
(2) 

= ~ c l  for x ~ Xo; ~ = ~02 for X ~  X o. 

We now transform the system of equations (I), introducing the stream function ~(x, y) 
from the continuity equation: 
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Fig. I. Distribution of dimensionless velocities (a) and tem- 
peratures (b) for ~ = i.i. @wa = 0.75; i) Pr = 0.7; 2) i; 3) 
2; 4) I0; @w2 = 1.5; 5) Pr = 0.7; 6) i; 7) 2; 8) i0; 9) i00; 
1o) o.1. 
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F i g .  2.  P r o f i l e s  o f  v e l o c i t i e s  (a )  and  t e m p e r a t u r e s  (b)  i n  t h e  
boundary layer for Pr = 0.7: i) @w= = 5; 2) 2; 3) 1.5; 4) 1.25; 
5) 0.82; 6) 0.75; 7) 0.5; 8) 0.25; 9) similarity solution; a) 

= 2; b) ~ = i.I. 

aT o2~ 01F 02T O3T 

all Ox@ Ox @2 @3 

Og r a~ aw o~ azo 

Oy Ox ax Oy ay z 

(3)  

We represent the solution for the stream function and the dimensionless temperature in 

t h e  f o r m ~ ( x ,  g)~4v(Grx{4)I/4F(~, ~), O=~/~cl ,  ~1= y (Grxa/4) 1/4, ~=X/Xo. 
X 

To determine F(~I, ~) and @(ql, ~), we obtain the following differential equations: 

O3F 02F ( On~ + 3F an~ 2 (' OF ' )2+0=4; O__F_F O2F O2F OF' 
\ am J am onf (4) 

I 020 dO ' OF O@ ao 
Pr a~l~ @ 3F = 4r ( a:aF ) & h  k & h  as a~ll _ 

with the transformed boundary conditions (2): 

OF OF 
$ ~ I :  - - 0 ,  F = O ,  O = l  for l h = O ;  

&h Oqx 
0, 0 = 0  for l q l ~ c o ;  

aF OF 
$ >  1 : - -  = 0, _F= 0, 0 =  0e2 for lh~--0; - - 0 ,  0----- 0 for rll---~oo. (5)  

3~lx &h 

Since the temperature variation in the upper part of the plate does not influence the 
temperature distribution and the distribution of temperatures and velocities in the lower 
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Fig. 3. The dimensionless rela- 
tive heat transfer coefficient 
as a function of the parameters 
8w2 and Pr: 8w2 = 0.75; i) Pr = 
i00; 2) i0; 3) 2; 4) 0.7; 5) 
0.i; Ow2 = 1.5; 6) Pr = i00; 7) 
i0; 8) 2; 9) i; i0) 0,7; ii) 
0.i. 

part for ~ < i, we determine the solution in the lower part of the plate as a similarity 
problem (the right side of Eq. (4) is zero) [5]. The similarity solution obtained for x = 
xo is used as the initial distribution of boundary layer velocities and temperatures. This 
eliminates the difficulty of assigning the original parameters in the numerical solution of 
the nonsimilarity problem beyond the discontinuity point. Analytical investigations by 
perturbation methods show that near the discontinuity point x = xo the singularity in the 

1 

distribution of temperatures and heat fluxes has the form (X--Xo) a [6-8]. 

In the present work numerical solutions of Eqs. (4) and (5) were carried out for Pr = 
0.i-i00 and 8w2 = 0-5. With increase of Pr number in the boundary layer viscous forces pre- 
dominate and the velocity decreases. The profiles of velocity and temperature become 
smoother, and the maximum velocity decreases and 'shifts toward lower values of the simi- 
larity variable ~ (Fig. i). Here the dynamic boundary layer thickness also decreases. 

A decrease of the parameter 8w2 leads to a decrease of the maximum dimensionless 
velocity (Fig. 2a). Because of flow deceleration the velocity profile becomes more smeared. 
Appreciable peculiarities are observed in the temperature distribution with variation of 
8w2. When the temperature ahead of the discontinuity is higher (8w2 < i), the temperature 
profile falls off more sharply, the larger is the value of the parameter (Fig. 2b). For 
8w2 = 0 (Tw2 = T~) the flow near the wall can be regarded as a wall layer with a given in- 
tegral characteristic for ~ = i. With increasing distance from the section of the dis- 
continuity the flow becomes homogeneous. No calculations were performed for large values 
of 8w2 because of flow instability, when the upper layers are hotter than the lower layers. 
In the experiments with 8w~ > 1.5 we observed leakage of hot air downward [4]. Evidently, 
to solve the problem in this case one must use the methods of matched asymptotic expansions 
[i]. 

Figure 3 shows a graph of the variation of the heat transfer coefficient with plate 
height. At the discontinuity section the heat transfer takes infinitely large values (~ 
(~ - -  l)-I/s). As the Pr number increases the heat transfer rapidly becomes equal to its 
asymptotic value. 

Beyond the point of discontinuity in temperatures to calculate the heat transfer one 
can suggest the approximate relation 
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(6) - ~  1/4 (;-- 1) Owzq- 1 

where c -- 0 . 9 0 1 6 A ( 0 ~  a -- 1 ) 3 O - ~ / z ( 1  -- 0wa)-~;  A = [ P r : / a ( 1  + 3 .9932Pr  ~/2 + 2 .9584 P r ) : / " ] /  
[ (1  + 1 .4903 P r g / : 6 )  ~ / 3 ] .  

W 2  

The error in this formula does not exceed 2.5% over the whole range of variation of the 
parameters. 

We obtain the mean value of heat transfer by integrating over the plate height 

i I/v~ _ I_- 

f 'r(;, (7) Nu:/Nu/1 = 1-b 
4 - -  1 

l 

I n  the  l i m i t i n g  c a s e  ; / x o  )) 1 t h e  h e a t  t r a n s f e r  Nut/Nun =l-q-Ow4=(l /xo-- t )a/4  i s  d e t e r -  

mined from the equation NuZa = Nul~. 

Therefore, the initial section does not affect the heat transfer in the upper part of 
the plate. 

If we use the correlations of [9], to calculate the average heat transfer we can suggest 
the following formula: 

13 13 [N~l/NUll--1]--f=lq_! 1.16(1--Ow2) ]-g- 
O~W~ ( l / x o -  1) 3/4 . Ow2(I/xo-- 1 ) , / , ,A , /a -  . (8) 

For  t he  v a l u e s  o f  Pr  and 0wa i n v e s t i g a t e d  the  e r r o r  in  Eq. (8) does  no t  exceed  3%. 

NOTATION 

x, y, longitudinal and transverse coordinates; u, v, components of the velocity vector 
on the x and y axes; xo, height of the surface with temperature Twl; l, plate length; T, 
temperature; ~ = T -- T=, excess temperature; 6 = (T -- T=)/(Tw~ -- T~), dimensionless excess 
temperature; v, kinematic viscosity; ~, diffusivity; g, acceleration due to gravity; B, co- 
efficient of volume expansion; u._-;/~..Tj , velocity scale; ~ = u/uo, dimensionless velocity; 
Pr = v/o, Prandtl number; Or=g~cla/v~ , Grashof number; Nu = ~Z/%, Nusselt number. Sub- 
scripts: w, values at the wall; =, at a large distance from the wall; wl, values at the 
wall ahead of the discontinuity; w2, the same, after the discontinuity; x, local value. 
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